A medium-throughput analysis of signaling pathways involved in early stages of stem cell reprogramming.

نویسندگان

  • Ashley L Fritz
  • Sunnie R Mao
  • Mary G West
  • David V Schaffer
چکیده

The induction of pluripotency from adult cells has enormous potential in regenerative medicine. While initial efforts to study mechanisms and improve efficiency of induced pluripotent stem cell (iPSC) reprogramming focused on the direct roles of transcriptional regulators, increasing evidence indicates that cellular signal transduction pathways can modulate this process. Here, we present a medium-throughput system to study the effect of signaling pathways on the early stages of reprogramming. We generated a set of lentiviral vectors encoding 38 genes that upregulate or downregulate major signal transduction pathways and quantified each signaling factor's effect on reprogramming. This approach confirmed the role of several factors previously implicated in reprogramming, as well as identified several GTPases-factors that to date have not been largely studied in reprogramming-that improve or hinder iPSC reprogramming. In addition, this methodology is useful in determining new targets for enhancing pluripotency reprogramming, lineage reprogramming, and/or cell differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signaling pathways involved in chronic myeloid leukemia pathogenesis: the importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells

Objective(s): Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential ...

متن کامل

آنالیز بیان افتراقی ژن ها در پاسخ به عصاره لیپوپلی ساکاریدی ازباکتری اشیرشیاکولای در سلول های اپی تلیال اندومتریوم گاوی

Lipopolysaccharide is a component of outer membrane of gram-negative bacteria involved in the pathogenic process leading to mastitis and metritis in dairy cattle. Additionally, LPS could be caused endometrium inflammation and implantation failure in many animal species. Based on economic importance of these diseases in dairy cattle industry, analysis of differential gene expression (DGE) and al...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

Investigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach

Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 112 1  شماره 

صفحات  -

تاریخ انتشار 2015